In Our Time: Mercury
May 10, 2024
In Our Time is a wonderful series on BBC Radio 4.
Melvyn Bragg and guests discuss the planet which is closest to our Sun. We see it as an evening or a morning star, close to where the Sun has just set or is about to rise, and observations of Mercury helped Copernicus understand that Earth and the other planets orbit the Sun, so displacing Earth from the centre of our system. In the 20th century, further observations of Mercury helped Einstein prove his general theory of relativity. For the last 50 years we have been sending missions there to reveal something of Mercury's secrets and how those relate to the wider universe, and the latest, BepiColombo, is out there in space now.
Linked in the grade 9 space unit.
Melvyn Bragg and guests discuss the planet which is closest to our Sun. We see it as an evening or a morning star, close to where the Sun has just set or is about to rise, and observations of Mercury helped Copernicus understand that Earth and the other planets orbit the Sun, so displacing Earth from the centre of our system. In the 20th century, further observations of Mercury helped Einstein prove his general theory of relativity. For the last 50 years we have been sending missions there to reveal something of Mercury's secrets and how those relate to the wider universe, and the latest, BepiColombo, is out there in space now.
Linked in the grade 9 space unit.
In Our Time: Heisenberg's Uncertainty Principle
May 10, 2024
In Our Time is a wonderful series on BBC Radio 4.
Melvyn Bragg and guests discuss the German physicist who, at the age of 23 and while still a student, effectively created quantum mechanics for which he later won the Nobel Prize. Werner Heisenberg made this breakthrough in a paper in 1925 when, rather than starting with an idea of where atomic particles were at any one time, he worked backwards from what he observed of atoms and their particles and the light they emitted, doing away with the idea of their continuous orbit of the nucleus and replacing this with equations. This was momentous and from this flowed what’s known as his Uncertainty Principle, the idea that, for example, you can accurately measure the position of an atomic particle or its momentum, but not both.
Linked in the grade 12 modern physics page.
Melvyn Bragg and guests discuss the German physicist who, at the age of 23 and while still a student, effectively created quantum mechanics for which he later won the Nobel Prize. Werner Heisenberg made this breakthrough in a paper in 1925 when, rather than starting with an idea of where atomic particles were at any one time, he worked backwards from what he observed of atoms and their particles and the light they emitted, doing away with the idea of their continuous orbit of the nucleus and replacing this with equations. This was momentous and from this flowed what’s known as his Uncertainty Principle, the idea that, for example, you can accurately measure the position of an atomic particle or its momentum, but not both.
Linked in the grade 12 modern physics page.
Teaching Science