
Ionic Bonding Manipulatives

by Robert Prior

Chemical bonding can be a very abstract subject for students. Atoms and compounds are too small to see; for kinesthetic and visual learners this can be a barrier. This booklet contains a set of cards students can use to balance ionic compounds.

Grade 10 Science: Chemistry

Printing Instructions

This booklet contains two versions of the ionic bonding cards: full colour in red and blue, and outline suitable for photocopying onto coloured cardstock. Each version makes three complete sets.

Printing Colour Cards

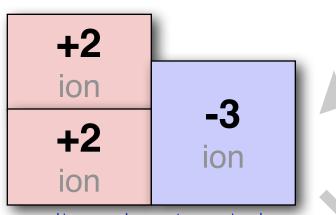
Pages 4-6 can be printed straight into cardstock, if your printer can handle it. Most modern printers can, but consult the printer manual to be certain. For best results, you will generally have to change a setting in the print dialogue to "Cardstock".

Photocopying Cards

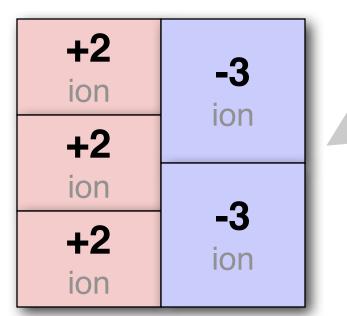
Print pages 7-9 on a good printer. Make one copy of page 7 and three copies of page 8 on one colour cardstock, and three copies of page 9 on another colour of cardstock.

Using the Cards

The cards are quite simple to use. There is an example on the next page. Additionally, a short video animation is included with the electronic version of this document, available at

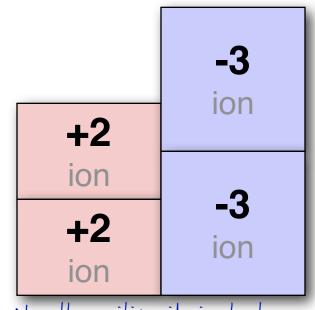

web.me.com/robertprior/science/

©2009 Robert Prior



Suppose you want to find the formula for magnesium phosphate. Magnesium is +2, and phosphate is -3, so get the +2 and -3 cards.

Place a +2 and -3 card beside each other.


Now the negative side is shorter, so add another -3 card.

Now they are even, so the charges are balanced. We need three magnesium and two phosphate. The formula is Mg3(PO4)2.

The positive side is shorter, so add another +2 card

Now the positive side is shorter, so add another +2 card

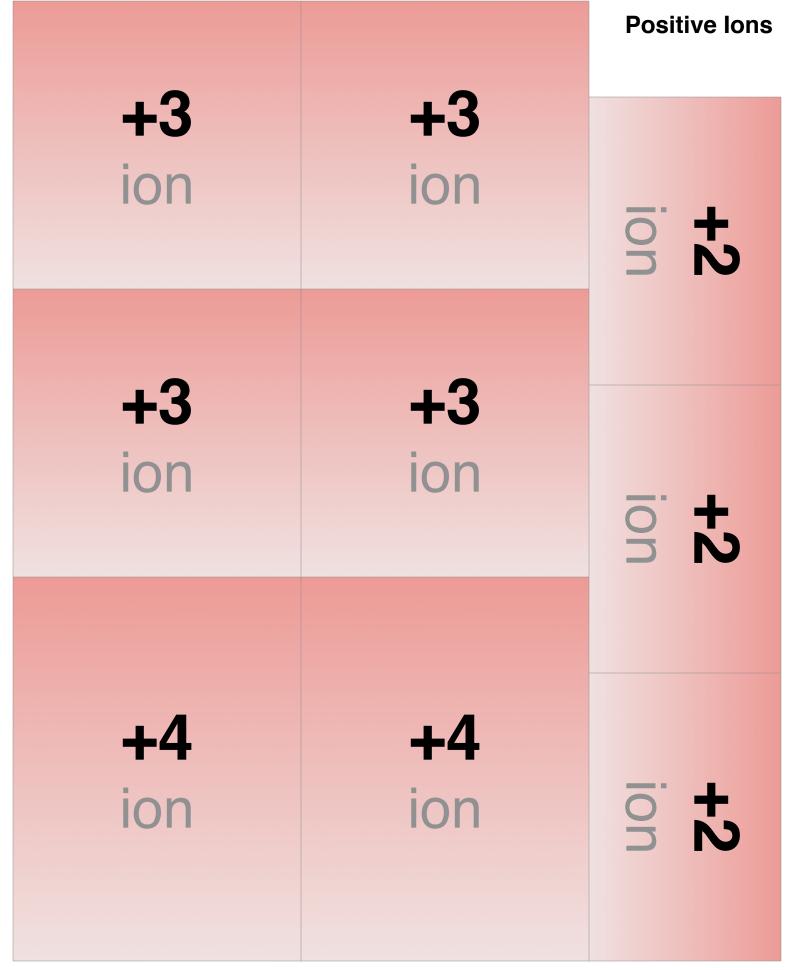
1 H 1.01																	2 He 4.00
3 Li 6.94	4 Be 9.01											5 B 10.8	6 C 12.01	7 N 14.01	8 0 16.00	9 F 19.00	10 Ne 20.2
11 Na 22.99	12 Mg 24.31											13 Al 26.98	14 Si 28.09	15 P 30.97	16 S 32.07	17 CI 35.45	18 Ar 39.9
19 K 39.10	20 Ca 40.08	21 Sc 45.0	22 Ti 47.9	23 V 50.9	24 Cr 52.0	25 Mn 54.9	26 Fe 55.8	27 Co 58.9	28 Ni 58.69	29 Cu 63.55	30 Zn 65.41	31 Ga 69.7	32 Ge 72.6	33 As 74.9	34 Se 79.0	35 Br 79.90	36 Kr 83.8
37 Rb 85.5	38 Sr 87.6	39 Y 88.9	40 Zr 91.2	41 Nb 92.9	42 Mo 95.9	43 Tc (99)	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
55 Cs 132.9	56 Ba 137.3	57-71 see below	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	89-103 see below					,		,			,	,				<u></u>

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
138.9	140.1	140.9	144.2	(147)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
(227)	232.0	(231)	238.0	(237)	(242)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

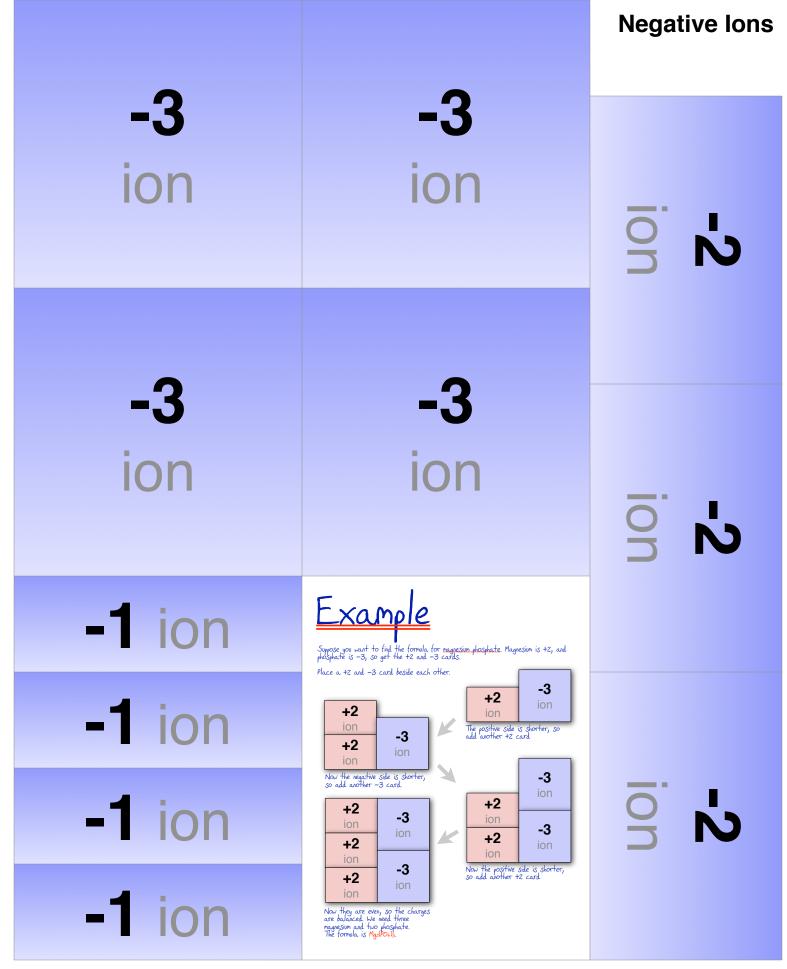
Polyatomic Ions						
bicarbonate	HCO₃ [_]	-1				
carbonate	CO₃⁻	-1				
chlorate	CIO₃ [_]	-1				
hydroxide	OH-	-1				
nitrate	NO₃⁻	-1				
nitrite	NO2-	-1				
phosphate	PO4 ³⁻	-3				
sulfate	SO4 ²⁻	-2				
sulfite	SO32-	-2				
ammonium	NH ₄ +	+1				
acetate	CH₃COO⁻	-1				
permanganate	MnO₄⁻	-1				
thiocyanate	SCN-	-1				
chromate	CrO4 ²⁻	-2				
peroxide	O2 ²⁻	-2				
thiosulfate	S ₂ O ₃ ²⁻	-2				

Multivalent Metals						
Symbol	Most common charge	Other charge				
Cu	2+	1+				
Hg	2+	1+				
Au	3+	1+				
Fe	3+	2+				
Co	2+	3+				
Ni	2+	3+				
Pb	2+	4+				
Sn	4+	2+				

+1 ion

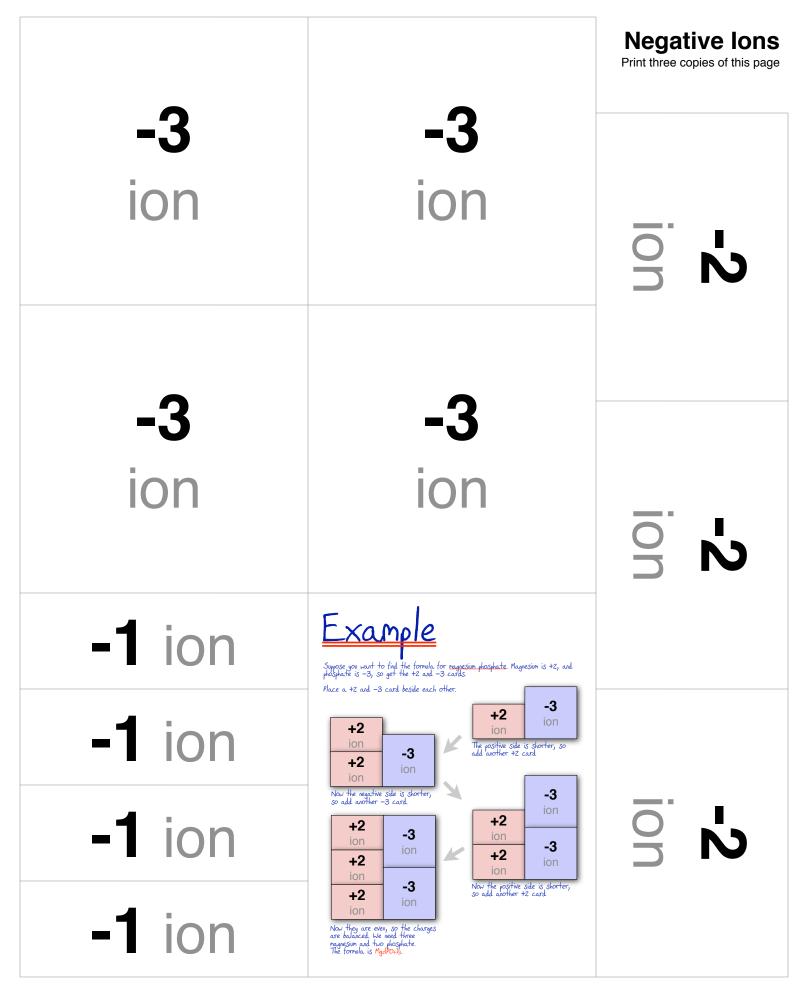

+1 ion

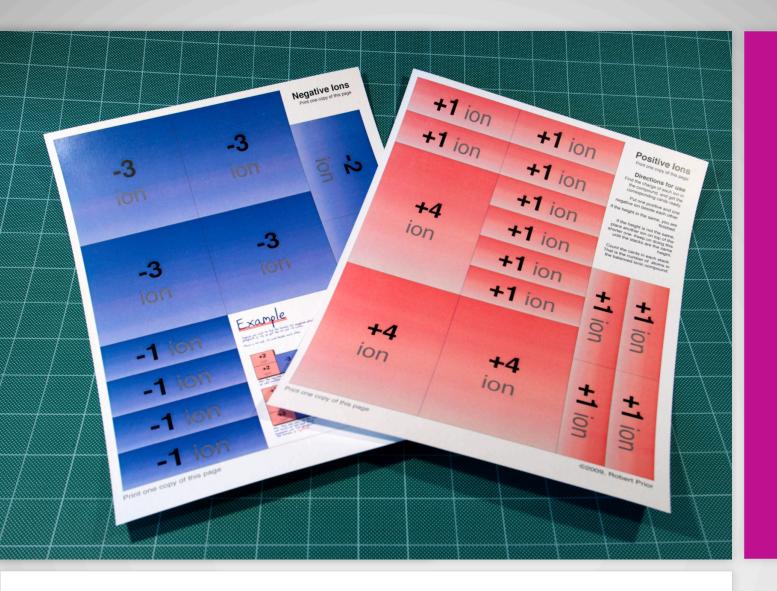
Other	Metals
Ag	1+
Zn	2+


+1 ion +1 ion

+4 ion


©2009, Robert Prior




©2009, Robert Prior

+1 ion +1 ion	+1 ion +1 ion	Positive lons Print one copy of this page Directions for use Find the charge of each ion in the compound, and get the corresponding cards ready. Put one positive and one negative ion beside each other.		
	+1 ion	If the height in the same, you are finished. If the height is not the same, place another ion on top of the shorter one. Keep on doing this until the stacks are the same height.		
+4	+1 ion	Count the cards in each stack. That is the number of atoms in the balanced ionic compound.		
ion	+1 ion	+ +		
	+1 ion	$\overline{}$		
+4 ion	+4 ion	H H H H H H H H H H H H H H H H H H H		

Science is the great antidote to the poison of enthusiasm and superstition.

Adam Smith, *The Wealth of Nations*, 1776.